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On the expansion of a gas into vacuum 

By H. P. GREENSPAN AND D. S. BUTLER? 
Mathematics Department, Massachusetts Institute of Technology 

(Received 24 November 1961) 

A study is made of the flow into vacuum of a gas initially at rest in a state of 
uniform pressure and density; the analysis is based on a continuum model. 
Among the topics discussed are the motion of the gas-vacuum interface, the 
reflexion of a plane front off a rigid wall, the propagation of compressive waves 
within such expansions, the escape from a sphere and the collapse of a spherical 
cavity. 

1. Introduction 
The basic problem studied here concerns the isentropic flow into vacuum of 

a gas whose initial state is one of constant pressure, Po, constant density, po, 
and zero velocity. 

The simple exact solution of the strictly one-dimensional problem for which 
the gas initially occupies an entire half space (see Stanyukovich 1960) is funda- 
mental to all that follows and it is desirable to discuss it anew at this time, 
emphasizing those features we wish to develop and exploit. 

Let 1, co = (yP,/p,)*, Z/c,,, po, and pocg represent respectively, the characteristic 
length, velocity, time, density and pressure. The equations of motion, in dimen- 
sionless form, are then 

2 
u,+uu,+-cc, = 0,  (1.1) 

Y - 1  
2 

__ (c,+uc,)  + C U ,  = 0, 
Y - 1  

(1.2) 

where ZL is the particle velocity, c is the local sound speed and y is the ratio of 
specific heats. Here we have used the isentropic nature of the flow, i.e. c2 = pY--l, 

and the fact that the gas is initially at rest in a uniform state to eliminate the 
pressure and density in favour of the local sound speed c. 

Subsequent to release, the only particles in motion lie between the gas- 
vacuum interface and the rarefaction front propagating into the stationary gas. 
The interface is the zero sound speed surface c = 0, along which pressure and 
density are both zero; the velocity of this front is an unknown. The acoustic 
front, however, propagates with unit dimensionless velocity into the quiescent 
gas. Consequently, equations (1.1) and (1.2) must be solved subject to the 
condition u = 0 on x = - t  (the gas is taken to occupy the region 5 < 0). The 
solution may be obtained by either the method of characteristics or by the 
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introduction of a similarity variable by which means the system is reduced to 
a set of ordinary differential equations. The latter method is used in 0 3; applica- 
tion of the former procedure yields the results: 

2 
U+-- c = const. 

c = const. 

along C+ characteristics given by dxldt = u + c ;  

along C- characteristics given by dxldt = u. - c. 

Y-1 

Y - 1  

2 
U--  

The complete solution satisfying the boundary conditions is 

2 
u= - ( l+q) ,  

Y f l  

y+1 y - 1  ) 

.=y-'( __- q )  

withq=x/t ,andfor-Z < q < 2 / ( y - l ) .  Fo rva lueso fq<- l , u=Oandc= l ,  
whereas the domain 7 9 2 / ( 7  - 1) corresponds to  the vacuum. The C+ family of 
characteristics are the curves 

(k is an arbitrary constant), and the C- characteristics are the straight lines 

(1.6) x = qt; 

the configuration is shown in figure 2. 
Several properties of the solution are especially noteworthy. First, the gas- 

vacuum interface, the curve c = 0, is a straight line implying that the front 
accelerates instantaneously and thereafter moves with constant escape velocity. 
Secondly, on the interface dxldt = u, so that this curve is also a particle path. 
It follows directly that the kinetic energy density is a maximum at the front 
whereas the potential energy density is a minimum there. (The particles con- 
stituting the front achieve a velocity larger than that possible in purely steady 
flows.) The redistribution of energy density over the mass of moving gas is one 
of the principal features of the unsteady escape process. Thirdly, the interface is 
genuinely a member of both families of characteristics curves, C+ and C-. It is 
not an envelope; in other words, no sound wave from the interior ever reaches 
the front. Fourthly, all derivatives are everywhere finite at non-zero times and, 
in particular, the following relationship holds 

limcc, = 0. 
c- to  

Stanyukovich (1960) considers several variations and generalizations of this 
basic problem. Among the topics discussed are the escape of a column of gas 
from both ends into vacuum, the escape of a gas from a tube of finite length, the 
expansion of a gaseous sphere into vacuum and the effects of body forces on 
such flows. However, there remain many interesting aspects of the problem which 
have not been dealt with as yet. For example, i t  is of interest to examine the 
behaviour of the gas-vacuum interface when the original gas container is arbi- 



On the expansion oj. a gas into vacuum 103 

trary, and to inquire into the circumstances for which it may be useful to relate 
the interface with an infinitely strong shock wave. The present research is 
intended to shed some light on questions such as these. 

Other authors, Copson (1950)) Pack (1953) and Keller (1957)) have con- 
sidered related problems generally assuming different initial conditions. The last 
mentioned presents an entire class of similarity solutions for gaseous expansions 
from a state of rest into vacuum, but the initial pressure, density and sound 

Continuum solution 

Kinetic solution 
1.2 

0 0 2  04 0 6  0 8  1.0 

z 

FIGURE 1. Comparison of continuum and collisionless-gas solutions. 

speed in these cases are not uniform and constant. As a consequence, the gas- 
vacuum interface does not maintain a uniform velocity but is found to accelerate. 
However, we had best postpone a more complete discussion of the roIe played 
by the initial conditions for the time being. 

Keller (1948) has compared the foregoing solution to that obtained by solving 
the Boltzmann equation in the case of the expansion of a collision-free gas into 
vacuum. The results shown in figure 1 indicate surprisingly good agreement 
between the two approaches. Evidently in such problems, results derivable 
from a continuum model apply a t  much lower density levels than might be 
expected. 

The gas-vacuum interface is related, in L-L sense, to an infinitely strong shock 
wave. If one gas is allowed to escape into another rest gas, the resultant flow 
may be divided into three regions, including a shock proceeding into the rest 
gas, a stationary rarefaction wave and a simple rarefaction wave into the 
escaping gas. If, furthermore, the density of the rest gas tends to zero, the 
entire shock regime including the stationary wave become meaningless inasmuch 
as the density also vanishes in this domain. The shock, however, becomes 
infinitely strong, i.e. the density ratio approaches (y  + l ) / (y  - l), even though 
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the density is itself zero. The only sensible motion then occurs behind the 
simple wave (gas-vacuum interface) which must by itself represent the degen- 
eracy of the entire system. In  other words we would expect the interface to 
behave in certain respects as an infinitely strong shock. In  order to illustrate 
this feature, we treat now the reflexion of a plane front off a wall showing that 
the front does indeed reflect as an infinitely strong shock wave. Stanyukovich 
considered this problem, but the concise treatment given here is different and 
many of the results are new. 

I 

Reflected shock 

x=o X'X, X 

FIGURE 2. Reflexion off a rigid wall-configuration. 

Suppose that the plane front impinges on a wall at x = xl. It will arrive at  
time t ,  = &(y - 1) x,. The gas particles in the front are moving with velocity 
2/(7- 1) as they approach the wall and must come to rest immediately after 
impact. Therefore, the flow variables are multivalued a t  (x,, t l)  and a reflected 
shock wave must be generated in order to accomplish the required deceleration. 
Furthermore, the similarity variable ( = (x - x,)/(t - t,) is appropriate near 
(xl,tl), since it is consistent with the uniform motion of the particles in the 
front. 

The flow in region 1, ahead of the reflected shock (see figure 2), is independent 
of the presence of the wall and the particle velocity and sound speed are given 
by the expressions (1.3) and (1.4). These are expanded in powers of ( t  - t l )  with 
coefficients depending on 6 :  
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where 5 = 2/(y-  1) = to is the incident front. Since the flow is homentropic, 
the corresponding expansions for the density and pressure are 

The flow in region 2, behind the shock, is non-homentropic and governed by 
the equations 

Pt + UP, + p u x  = 0, (1.11) 

P(Ut + uuz) +P, = 07 (1.12) 

(1.13) YP 
P 

Pt + UPX - - (Pl + upx)  = 0. 

The solution must satisfy the boundary condition u = 0 on x = x1 and must be 
matched with the known solution for region 1, across a shock discontinuity. 

For small (t-t,), the total change in particle velocity across the shock and 
region 2 is 2/(y - 1) = O(1). If an appreciable proportion of this change occurs 
across the shock front, its velocity must also be O( 1). The sound speed, density 
and pressure of the gas ahead of the shock wave are O(t-t,),  O(t-t l)z/(~--l)  and 
O(t - tl)2Y/(Y-1), respectively (see equations (1.8) to (1.10)). Therefore, the strong- 
shock approximation to the Rankine-Hugoniot conditions is valid for small 
(t - tl) and the density, pressure and particle velocity immediately behind the 
shock are O(t - tl)z/(7-1), O(t - tl)z/(~-l) and O( l ) ,  respectively. The appropriate 
form of the solution in region 2 is therefore 

p = ( t - t  1 )Z/(7-1) [Po([)  + (t  - tl) P l ( 8  + * .  -1, 
p = ( t - t  1 )Z/(Y-U [ P o ( ~ + ( ~ - ~ I ) P I ( ~ ) +  . - * I ,  
u = U O ( 8  + ( t  - tl) U l ( 9  + * - 7  

(1.14) 

(1.15) 

(1.16) 

and the position and velocity of the shock front are 

and 

( =  Uo+gUl(t-tl)+ ..., 
u = U0+U1(t- t1)+ ..., 

(1.17) 

(1.18) 

where Uo, U,, etc., are constants. The boundary condition at  the wall implies that 

u0(O) = Ul(O)  = ... = 0. 

When the expressions (1.14) to (1.16) are substituted into equations (1.11) 
to  (1.13), and the lowest-order terms are equated, the following equations for 
po, p,, and uo are obtained : 

(1.19) 

Po(uo- t )uA+PA = 0, (1.20) 

(1.211 

2Po/(Y - 1) + (uo - 6 )  PA + POUA = 0, 

2Pol(Y - 1) + (uo - [)PA - (YPo/Po) PPO/(Y - 1) + (uo - f [ )  PA} = 0. 
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The solution of these equations near [ = 0, satisfying u,(O) = 0 is found by 
assuming the expansions 

(1.22) 

H .  P .  Greenspan and D .  8. Butler 

Po([ )  = P("o+a15r+a,!P+ ... 1, 
PO(8 = t v + ) + b l P + b , t 2 ~ +  ... ), (1.23) 

uo(6) = ~ ~ ( C 0 + C 1 ~ ~ + C 2 [ ~ ~ +  ... 1, (1.24) 

where v > 0, 6 > 0, a, + 0, b, $: 0 and c, $: 0. Only one set of values of the 
indices a, p, 6 and g, leads to a consistent solution. This set is 

0 

FIGURE 3. Reflexion off a rigid wall-solution. The subscript one 
denotes values in front of the shock. 

a, and b, may be chosen arbitrarily, but once these are fixed all the remaining 
coefficients are uniquely determined. A two-parameter family of solutions is 
thus obtained. 

The whole family of solutions can be expressed in terms of one particular 
solution. Suppose 

is such a particular solution, then it is easily verified that 

P o ( 0  =f(a Po(U = d o  U O ( 8  = a) 

P O ( 8  = 4f (< /B)?  

Po([) = AB2S(5/B)' 

= Bh(E/B)' 
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where A and B are arbitrary constants, is also a solution satisfying the boundary 
condition u,(O) = 0. The functions f, g and h are determined by specifying a. 
and b, arbitrarily and integrating the ordinary differential equations (1.19) 
to (1.21) numericallyusing the series near 6 = 0 for starting values. The constants 
A and B and the initial shock velocity U, are then determined by using the 
shock relations to  match the solution for region 2 with the known solution for 
region 1. 

The series (1.14) to (1.18) may be developed further by considering higher- 
order terms in the equations (1.11) to (1.13) and the shock relations. Alternatively 
the solution for larger (t - t l )  may be obtained by direct numerical integration of 
the partial differential equations (1.11) to (1.13), using initial data obtained 
from the zero-order solution. 

The zero-order solution for y = 1.4 is shown in figure 3 normalized with respect 
to the values of p and u just ahead of the shock. po(6)  is not very sensitive t,o 
variations of (, confirming Stanyukovich’s observation that space-wise pressure 
variations are small. u,(C) is approximately linear. This means that good 
approximations to po(( ) ,  p o ( [ )  and uo(E) may be obtained by using only the 
leading terms of the expansions (1.22) to (1.24). 

2. Shockwave-front interaction 
A weak compressive wave impinging upon the expansion strengthens as it 

propagates through the region of decreasing density. Ultimately a shock develops 
somewhere behind the front. The position and time (x,,t,) of the onset of the 
shock formation are easily determined; the calculation is straightforward and 
many of the details are omitted here. 

Let the compression wave be generated by the motion of a piston in the rest 
gas and let the disturbance reach the expansion at position x, and at  time 
to = - x,. It is assumed that the derivatives of u and c are discontinuous across 
the leading characteristics of this sound wave; the quantities themselves are, 
of course, continuous. As the wave propagates towards the front, it strengthens 
and at  position (x,, t,) the derivatives of u and c become infinite indicating the 
formation of a shock wave. For compressional waves of this type, position 
(x,, t,) is located on the C+ characteristic passing through the point (x,, to), 
denoted by C$?, which is 

(2.1) 

The state of the gas ahead of this wave is known from the fundamental solution, 
and in particular, along C?), 

In  terms of the co-ordinate 5 measured with respect to the moving secondary 
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( 5  = 0 on the curve C?)), and the time t ,  the equations for the Riemann invariants 

4 = u+2c / (y - l ) ,  (2.4) 

9 = u - 2c/(y - l), (2.5) 

If, now, we utilize wave-front expansions of the form 

m m 

i t  follows that 

and 

where k is a constant. 

4 1  
$1 = - 3 7 ’  I 

. The last expression shows that the derivative $l(t) = 4515=o 
becomes infinite at  the time t, = k$(Y+l).  Since the wave is a compression, let 
$l(to) = - m  > 0. We can then evaluate the constant k and locate the position 
of shock formation, 

(2.10) 

(2.11) 

(Note that this position lies behind the gas-vacuum interface.) Additional terms 
of the series can be computed, as desired, in order to determine the solution 
behind the compressive wave front, and the formation of shocks in this region. 
This is not, however, our primary aim. 

The shock wave thus created continues to strengthen as it overtakes the 
gas-vacuum interface. To gain insight into the collision of shock and front, we 
consider a slightly modified problem in which a strong shock wave impinges 
upon the expansion. The shock is created by the uniform motion of a piston in 
the stationary gas. The analysis is based on the characteristic rule, developed 
by Chisnell (1955), Whitham (1958) and others and is entirely similar to the 
development contained in Whitham (1958), 9 6. Alternatively, the motion of 
the shock as it nears the gas-vacuum interface can be studied by using a similarity 
solution. A recent paper by Sakurai (1960) uses this method for a related problem. 

The technique or rule is to apply the relationship 

d P + p c d u  = 0, (2.12) 



On the expansion of a gas into vacuum 109 

which is valid along a C, characteristic, along the shock front. The flow behind 
the shock is non-homentropic and the strong shock relationships are 

(2.13) 

Here, U is the dimensionless shock velocity (c, U is the dimensional quantity) 
and pi = p i ( r )  is the density in front of the shock wave. Substitution of these 
formulas into equation (2.12) results in a differential expression relating the 
shock velocity to the density 

d p / p + ( 2 + ( 3 ) b J d U / U  = 0. (2.14) 

Therefore, U can be obtained as a function of p by a quadrature. Since the 
density is itself solely a function of the variable q = x/t ,  the velocity is too and, 
in fact, 

where 

u = U(7)  = U (  - 1)p-", 

Q =  2 + ( 3 )  4 . 
(2.15) 

(2.16) 

U becomes infinite as the shock approaches the gas-vacuum interface and p(q)  
nears zero. It follows from (2.13) that the particle velocity also increases in- 
definitely. At the impact of the shock upon the interface, the particles con- 
stituting the front instantaneously accelerate to infinite velocity. Since the 
sound speed is non-negative, the Lagrangian equation governing the motion 
of the frontal particles 

2 
ZL, = - ~ lim cc, 

shows that the acceleration is always non-negative too, i.e. the frontal particles 
can never decelerate. We conclude that the interface is instantaneously pro- 
jected to infinity by an impinging shock wave. 

Thus the motion of the front is unstable with respect to small compressive 
disturbances forming in the interior of the flow. For this reason, we shall sub- 
sequently confine our attention to a study of gas expansions in the initial stages 
of motion at small times. 

Y - l c + o  

3. Spherical and cylindrical fronts 
A uniform stationary gas occupying the region interior or exterior to a sphere 

(or cylinder) of unit dimensionless radius is allowed to expand freely into the 
complementary vacuous space. In  the initial stages of the motion, a sound wave 
propagates into the quiescent gas as the gas-vacuum interface proceeds into 
vacuum. The Eulerian equations governing such symmetric flows are 

ut+uu,+2(y- l)-lcc, = 0,  (3.1) 

( 3 4  2 ( y  - 1)-1 (ct + uc,) +cur + fTcu/r = 0,  
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where CT = 0, 1, 2 corresponds to the one-, two- or three-dimensional problems. 
Alternatively, these equations can be written in terms of the characteristic 

(3.3) 
uc 

cf+cr-tf = 0, r6 = ( u + c ) t f ;  
variables, as 2 

U f + r _ l  r 

uc 
c,+a-tt, = 0, ?A,-- r, = ( u - c ) t 9 .  

2 
Y - 1  r (3.4) 

The boundary conditions require only that u = 0 on the curve c = 1, the leading 
characteristic of the sound wave propagating into the stationary gas. The gas- 
vacuum interface is located by the requirement c = 0. 

The objective here is to show that the gas-vacuum front propagates with the 
constant velocity 2/(y - 1) for all symmetric motions of this type just as it does 
in the one-dimensional problem. The frontal motion is essentially unaffected 
by the geometrical factor mulr appearing in (3.2). This is perhaps not so surprising 
in the case of divergent motion (by which we shall mean that the gas is initially 
contained within a sphere or cylinder) for then the extra term plays the role of 
a retarding force on the motion of the front. But it is easily shown that the front 
cannot decelerate so that the magnitude of this force at  the interface must be 
zero. Indeed we may argue that the front is either a characteristic or an envelope 
of such curves. Consider the latter case, and let q(r ,  t )  = constant be a C+ charac- 
teristic which emanates from the stationary gas and touches the interface. Upon 
integrating equation (3.3) along the entire length of this characteristic from [,, 
to tf (the front), we find that 

2 
(3.5) 

where the subscript f denotes values a t  the interface. For small t at least, the 
quantity ucjr is certainly non-negative along the entire characteristic, and this 
implies that the integral appearing in (3.5) is positive since t,dc = dt > 0. It 

UCr) ~ 

However, the front must begin to move with the velocity appropriate to the 
local one-dimensional configuration, that is u = 2/(y - l) ,  and if the inequality 
sign were to hold in the preceding expression, we could only conclude that the 
front must, at some time, decelerate. That this is impossible is a direct conse- 
quence of the Lagrangian equation governing the motion of the frontal particle, 

follows then, that 2 
y-1 '  

The sound speed is a non-negative quantity which increases away from the 
front, c = 0, i.e. 

The acceleration of the frontal particle is then non-negative, showing that it 
cannot decelerate at any time. Therefore, the front must be a characteristic 
curve (not an envelope) and the velocity of the diverging interface is a constant 

(CCA,) 6 0. 

R 

(3.7) 
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(If a co-ordinate c(r ,  t )  orthogonal to 7 is introduced, there results from equation 
(3.3) the relationship 2 2 

u ( f )  + __ '(f) = 7 J 

Y-1 Y- 
which is equation (3.7) since c ( ~ )  = 0.) Consequently, no sound waves (character- 
istics) from the interior reach the front in the initial stages. Compressional 
disturbances may arise at later times due to instabilities and these develop into 
shock waves, as discussed in 8 2,  which intersect the front. 

The converging front presents a more subtle case, and the preceding arguments 
do not apply. The geometrical factor now tends to accelerate the front if it  has 
any influence at all. That it indeed exerts no effect on the front whatsoever is 
suggested by the belief that the forcing term to the right in equation (3.6) is 
probably zero at small times, since it is so in the one-dimensional problem. 
Only when (if) the gradient, c,, becomes infinite so that 

limcc, + 0 

can the front accelerate and this necessitates the formation of an envelope. It 
is difficult to show conclusively that envelopes do not form in the initial stages, 
and i t  is best to postpone a continued discussion of this point pending further 
analytical investigation. 

We take as basic dependent variables the one-dimensional Riemann in- 
variants #, $ (equations (2.4) and (2.5)). In  terms of a 'similarity' co-ordinate 
system consisting of the time t and the variable 

c-to 

71 = (. - l ) / t ,  
equations (3.1) and (3.2) become 

(If the first of these is represented symbolically as L($,$) = 0, the second is 
L($, #) = 0.) The boundary conditions require that u = 0, c = 1 on the leading 
characteristic of the sound wave propagating into the stationary gas. That is 
to say 4 = - l/r = 2/ (y  - 1) on 7 = - 1 (r = 1 - t )  if the gas-vacuum front is 
diverging, or on 7 = 1 ( r  = 1 + t )  in the case of convergence. Again, the con- 
dition c = 0 locates the interface. 

For future use, note that if #(q ,  t )  and $(q, t )  are solutions of the differential 
equations (3.9) and (3.10), then 

#*(r,t)  = -$(-% -% $*(%t)  = -4(-71, - t )  (3.11) 

are also solutions of the same equations. 
Consider first the solution of the boundary-value problem for which the 

gas-vacuum interface is a diverging front. We restrict our attention to t < 1, 
that is before the sound wave reaches the symmetry axis. We seek a solution 

$ = Z A,(7)tn) $- = X Bn(T)t") (3.12) 
of the form m 00 

n=O ,=O 
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satisfying the foregoing boundary conditions. Once these coefficients are com- 
puted, the solution of the converging front problem denoted by asterisks is 
given by equation (3.11) 

with #* = - $* = 2/(y-  1) on 7 = 1 and 7 < 1; 0 < t. It follows from these 
expressions that the radii of convergence of both series representing diverging 
and converging expansions are identical. Consequently, we need only consider 
the case of divergent motion to completely solve both problems. 

The replacement of the series of (3.12) into equations (3.9) and (3.10) leads to 
a set of non-linear ordinary differential equations for the coefficient functions 
A,(q), B,(T,I) which are, for n = 0, 

(3.13) 1 ( - 7  + icy+ $(3-~)BO)dAo/d7 = 0, 

( - T,I -k $(3 - y )  A,  + $(y + 1) Bo) dBo/dq = 0, 
and for n 2 1 

fl,({Ail> {BiN + 7 8 n - M d I ,  {Bil) = - cL-I@il, {Bil) (3.14) 

and fl,({Bih {Ail) + 7fl,-I({Bil, {Ail) = C-I({Bil> {Ad)), (3.15) 
where 

The boundary conditions require that 
2 

A,(-1) = -B,(-1) = y __ - 1 L* 

The appropriate solution of equation (3.13) is 

13-y 2 4 
A, = __ 

y - 1 '  

(3.18) 

(3.19) 

and these zeroth-order terms are, in fact, the complete solution of the one- 
dimensional problem, c = 0 (see equations (1.3) and (1.4)). 

It is convenient to introduce the variable 

(3.20) 

and henceforth to consider all coefficients and dependent functions to be func- 
tions of z and t (instead of 7 and t ) ,  i.e. 

2 
Bo = - 

2 
Accordingly, A, = y - 1 '  __ y - l ( l - 2 a  (3.21) 
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and the next two coefficients are then 

(3.22) I 4 a  wzo 4 a  z 
A,@) = y + 1 ( 2 - w ) ( l - w )  

2 a w ~ (  1 - Z) 2g(3 - 
B,(z) = -___- 

Y + l  

- 

~ - ___ - 

where 2w = (y + l ) / (y-  1). In  particular, A ,  = B, = 0 at z = 0 (7 = 2/ (y  - 1)) 
and it can be shown that this is a property common to all subsequent coefficients, 
i.e. 

A ,  = B, = 0 for z =  0, n 2  1. 

In  order to prove this assertion, equations (3.14) and (3.15) are first manipulated 
into the form 

(The equations for the coefficients A,, B,, are of the same form.) 
Let 92 denote the class of functions consisting of a linear finite sum of terms of 

the form I<z'Inmz, where v 2 1, m is a positive integer and K is a constant. If 
p ( z )  is a typical element of this set, then 

p ( z )  = z~o[KhO) + KiO) In z + . . . + KgL lnmo z]  + . . . 
+ Z ~ J  [Kby) + Kiy) In z + . . . + Kgj ln*"j 21. 

We prove first that all the coefficient functions A,, B, are members of 92. 
An induction argument is used; it is shown that if the functions A , .  . . A,-,, 
B, ... Bn-, belong to class 92, then so do A ,  and B,. The functions A ,  and B, 
certainly satisfy this condition. Furthermore, it is easily verified that such com- 
binations as, for example, 

{ ( y +  l)Bn-,+ (3 -Y)A,-,}dBk/dz, T,({~g},{~g}), etc.9 
are members of 92 for 0 < k < n- 1. Therefore, equation (3.23) is of the form 

(3.25) 

which has the homogeneous solution 
kzX 

with h = &n(y+ l)/(y- 1) 2 1. The particular solution corresponding to an 
inhomogeneous term of the form 

zy In" z 

is 
m ( -  I)"! lnm-kz 

z v c  -- 
,=O (m-Ic)! (,-A)", 

8 Fluid Mech. 13 
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if v + h and zvlnm+lz/(m + 1) in the exceptional circumstance v = A. In  either 
case, the particular solution satisfying the boundary condition belongs to class 
9, i.e. A,(z) belongs to 9, n B 1. Furthermore, equation (3.24) implies that 
B,(z) belongs to 9, and this completes the proof. It should be noted that the 
boundary condition B,( 1) = 0 is automatically satisfied. 

Every function p ( z )  belonging to 92 has the following properties: 

(9 P(0)  = 0, 

(ii) l $ l <  oo for all finite values of z. 

Since A,(O) = - B,(O) = 2 / ( 7  - 1) it  follows directly that 

c = 0, 

on the curve z = 0. 
2 u=-- 

7-1 

In  other words, the gas-vacuum interface is the curve z = 0 (7 = 2/(7-  1)) and 
this front moves with constant velocity. 

Although we considered only the case divergent of motion, equation (3.11) 
et seq. imply that the proof is also valid for convergent motion as well. For such 
flows, the variable 7 is to be replaced by -7, in all calculations, so that, for 
example, z = (y  - l) /(y + 1) {2/(7 - 1) + q}, etc. The analysis then proceeds in 
exactly the same way. The notation for both cases is summarized in Table 1. 

The gas-vacuum interface moves with constant velocity unaffected by geo- 
metrical configuration, in both the convergent or divergent expansions. 

The specific coefficient functions, for the values y = +, = 2,  are illustrated 
in figure 4. The first few coefficients are 

(3.26) I A ,  = 3, A ,  = -12(2-zz”+22Inz), 

A ,  = 36[z - 2z2 + gz3 + 4z4 + (z2 In z)  ( 2  - $2 + $2 In x ) ] ,  

B, = 3(1-2z), B, = 6 ( z - z 2 + ~ z 2 l n z ) ,  

B, = - 12(+ - 32, +$z3 + Qz4) - ( z 2 h  2) (18 -$% + 15zhz ) .  

The velocity and sound-speed coefficients, u, and c,, are shown in figure 5. The 
deviation of c from the one-dimensional value is entirely negative (positive) for 
divergent (convergent) motion. The corresponding deviation of the velocity 
u changes sign somewhere in the expansion. The absolute magnitude of u 
increases (decreases) behind the front for convergent (divergent) flows as a result 
of the focusing due to the geometry. 

Stanyukovich (1960) in dealing with the divergent spherical problem takes 
the Riemann invariant 4 to be a constant throughout the expansion. The 
solution thus obtained (y = 3 only) shows no oscillation of the velocity profile 
about the one-dimensional case and indeed does not satisfy the energy equation. 
Although the procedure calls for continued iterations, these are difficult to 
carry out. 

The question of the convergence of the series expansions for 4 and $ remains. 
Obviously we would like to prove conclusively that the series converge uni- 
formly for appropriately small values of t at any position in the rarefaction 
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0 < z < 1. This would eliminate the possibility that shock waves form in the 
interior of the flow at small times as they do in the case of the expansion of a gas 
in a spherical container into another gas at  rest (Friedman 1961). (In such 
motions, the characteristics reflected from the shock front are responsible for 

11= 

Z =  

9 =  

Quantity Divergent motion 

r -  1 

Convergent motion 

r -  1 

@ =  
A,@),  B,(z) satisfy 

= 3(9+ @) 

c = acy-1)(4-$) 

Un(2) = 
Cn(z) = 

z = o  
Gas-vacuum interface, 

Sound front, 
Gas motion in the interval 

O , ( Z < l  

t 

2 Bn(4 tn 
0 

equations (3.23), (3.24) 

O , ( t  

TABLE 1 

t 

Z l ( L  ) 
y + l  y- l+T 

co 

0 
-2 ( -  1)" B,(z) t" 

-2  ( - 1)" A&) t" 
m 

0 

equations (3.23), (3.24) 
W 

-2 ( -  1)" U,(Z) t n  

2 cn(z) tn 

&(An + Bn) 
3Y-1) (A7L-B") 

0 
m 

0 

O < t  

the interior shock wave; here no such phenomena occur.) In  view of the com- 
plexity of the recurrence formulas interrelating the coefficient functions, such 
a task is indeed formidable. Some progress has been made in this direction and 
there is available sufficient evidence to make this assertion convincing, although 
a complete proof is, as yet, lacking. For these reasons, we present and summarize 
the evidence here and defer the details of this phase of the investigation to a 
future report. 

It would appear from the computed functions that the particular expansions 

C A',(O) tn, C B',(O) tn probably represent extreme cases in matters of con- 

vergence, for these are the most highly differentiated terms evaluated at  the 
most crucial physical position. These series can be shown to converge at  least 
for values y < Q with radii of convergence exactly equal to t = 2 / (y -  1). This 
is, in fact, the time required for the gas-vacuum interface to reach the centre in 
the case of convergent motion and represents the smallest characteristic time 
occurring in the entire phenomenon. Furthermore, for y = Q, the expansions 
are even summable and it is found that in the case of divergent motion 

m 03 

0 0 

(3.27) 

8-2 
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whereas for convergent flows 
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(3.28) 

These simple expressions can also be independently determined directly from 
the equations of motion by a ' wave-front ' analysis similar to that of $2. Let 

0 0.2 0.4 0 6  0 8  1.0 

z 

FIGURE 4. Coefficient functions for 
spherical flow problems, y = Q. 

co=Z, ~ , - 3 ( 1 - ~ )  

-1.0 
0 0 2  04 0 6  0.8 

z 

FIGURE 5. Coefficient functions for 
spherical flow problems, y = 8. 

I 

If equations (3.9) and (3.10) (suitably rewritten) are differentiated with respect 
to x ,  and the limit taken as x becomes zero, two equations for f and g result, 

The foregoing formulas contained in (3.27) and (3.28) (y  = $) are solutions of 
these equations. No other closed-form solutions have been found. 
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Another wave-front analysis in the neighbourhood of the sound wave, z = 1, 
shows that here too, the series are both convergent and summable for all y. 

for divergent motion and 

(3.29) 

(3.30) 

for convergent motion. Thus, the particular series expansions converge at  either 
side of the rarefaction and it seems plausible then to assume convergence 
throughout the entire interval 0 < z 6 1. The value of the derivatives on either 
side of the flow regime show that the velocity profile does indeed oscillate about 
the one-dimensional distribution as previously discussed. 

No attempt has thus far been made to examine convergence for values of 
y > Q although this is a most interesting question. Various similarity solutions 
have been obtained (to be published in a forthcoming report by C. Hunter) for 
which the collapsing front moves with constant velocity even near the centre 
if y is small enough. On the other hand, for values of y which are large, in par- 
ticular y = 7, it is known (Hunter 1960) that the interface accelerates. There is 
evidently a critical value of y which separates the two regimes. The exact nature 
and behaviour of the flow as a function of y is a topic currently under investi- 
gation. 

The solution of the collisionless Boltzmann equation for spherical expansions 
does not give significantly different results at early times from the corre- 
sponding one-dimensional analysis. 

4. Conclusion 
The expansion of a gas into vacuum from uniform rest conditions is character- 

ized by an essential redistribution of available energy so that unsteady escape 
velocity is significantly greater than the steady counterpart. The analytical 
investigation indicates that a particle in the gas-vacuum interface moves with a 
uniform escape velocity of dimensionless magnitude 2/(y - 1) in a direction per- 
pendicular to the original surface after an instantaneous acceleration. The 
interface apparently moves independently of the remainder of the gas until such 
time when either the frontal particles collide (which would occur if the original 
container were somewhere concave) or until dispensed with by a shock wave 
formed on the interior. A square container, figure 6, would expand as indicated. 
Each corner opens into a quarter circle and the entireinterface eventually becomes 
circular. The mass, energy, etc., are, however, concentrated in four jet-like 
structures each moving perpendicular to a face of the original figure. 

The study of a collapsing spherical cavity shows that geometry does not alter 
these statements, at least in the early stages of motion. There exist infinitely 
many similarity solutions for moderate values of y which are valid for motion 
near the centre and have the property that the front moves with constant velocity. 
The manner in which the short-time solution connects with a particular similarity 
solution has not been studied as yet. 
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The value of y seems to be a critical factor since if this parameter is largeenough, 
the front actually accelerates, i.e. becomes an envelope of characteristics. The 
critical number dividing the two domains for which the front is either an 
envelope of characteristics (large y )  or a genuine characteristic itself (smaller y )  
is presently under investigation. 

The condition that the gas be initially a t  rest and of uniform pressure and 
density is also essential. If, for example, the pressure density or sound speed 
initially increased away from the container wall, the resultant interface acceler- 
ates after release (Keller 1957). The front is then an envelope. On the other hand, 
if the foregoing quantities decrease or remain constant from the container, the 
interface will move with constant velocity. 

FIGURE 6. Expansion of a square. 

From the series expansions we find that the one-dimensional solution is a 
fairly good approximation to  the spherical flow pattern for SL moderate length 
of time, of the order of one-third the total time for the front to reach the centre. 

In  a sense, the gas-vacuum interface can conceivably serve to locate approxi- 
mately the position of a strong shock which would develop if the expansion took 
place into a uniform quiescent gas of lower density. The simplicity with which 
this determination can be made suggests the possibility of an approximate 
iterative theory based on the related frontal motion as a first step. 

For example, in this speculative vein, consider the efflux of one rest gas in a 
pipe into a stationary gaseous medium. If  the density of the external medium 
were much smaller than the density of the gas in the pipe, we would be tempted 
to consider the corresponding gas-vacuum flow, associating the position of the 
interface with the location of the strong unsteady shock as a first approximation. 
The particles on the original surface all translate to the right (figure 7) with escape 
speed. Particles on the pipe wall execute an instantaneous Prandtl-Meyer 
expansion from a known state into vacuum a t  the open end and then proceed 
into vacuum in a direction and with the velocity thus obtained. In  this manner, 
a continually developing surface is achieved which evolves into the steady-state 
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configuration. The upper portion of the curved frontal surface is given para- 
metrically in terms of polar co-ordinates ( r ,  O ) ,  measured from the pipe edge, as 

r = u,(t - 7)’ 

where 

and t 2 7 2 &(?- I),  M = ui/ci. 

(The pattern is symmetric about the axis.) Further effort is required to investi- 
gate this approach. 

FIGURE 7. Expansion from a tube into vacuum. 
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